
Regular Expressions

Recap from Last Time

Regular Languages

A language L is a regular language if
there is a DFA D such that ℒ(D) = L.

Theorem: The following are equivalent:

• L is a regular language.

• There is a DFA for L.

• There is an NFA for L.

Language Concatenation

If w ∈ Σ* and x ∈ Σ*, then wx is the
concatenation of w and x.

If L₁ and L₂ are languages over Σ, the
concatenation of L₁ and L₂ is the language
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }

Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb
}, then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }

Lots and Lots of Concatenation

Consider the language L = { aa, b }

LL is the set of strings formed by concatenating pairs of
strings in L.

{ aaaa, aab, baa, bb }

LLL is the set of strings formed by concatenating
triples of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

LLLL is the set of strings formed by concatenating
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}

Language Exponentiation

We can define what it means to “exponentiate” a
language as follows:

L0 = {ε}

The set containing just the empty string.

Idea: Any string formed by concatenating zero
strings together is the empty string.

Ln+1 = LLn

Idea: Concatenating (n+1) strings together works
by concatenating n strings, then concatenating one
more.

Question: Why define L0 = {ε}?

Question: What is Ø0?

The Kleene Closure

An important operation on languages is the
Kleene Closure, which is defined as

L* = { w ∈ Σ* | ∃n ∈ ℕ. w ∈ Ln }

Mathematically:

w ∈ L* iff ∃n ∈ ℕ. w ∈ Ln

Intuitively, all possible ways of
concatenating zero or more strings in L
together, possibly with repetition.

Question: What is Ø0?

The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

} Think of L* as the set of strings you can make if you
have a collection of stamps – one for each string in L –
and you form every possible string that can be made

from those stamps.

Closure Properties

Theorem: If L₁ and L₂ are regular languages
over an alphabet Σ, then so are the following
languages:

• L₁

• L₁ ∪ L₂

• L₁ ∩ L₂

• L₁L₂

• L₁*

These properties are called closure
properties of the regular languages.

New Stuff!

Another View of Regular Languages

Rethinking Regular Languages

We currently have several tools for showing
a language L is regular:

• Construct a DFA for L.

• Construct an NFA for L.

• Combine several simpler regular
languages together via closure
properties to form L.

We have not spoken much of this last idea.

Constructing Regular Languages

Idea: Build up all regular languages as
follows:

• Start with a small set of simple
languages we already know to be
regular.

• Using closure properties, combine these
simple languages together to form more
elaborate languages.

A bottom-up approach to the regular
languages.

Constructing Regular Languages

Idea: Build up all regular languages as
follows:

• Start with a small set of simple
languages we already know to be
regular.

• Using closure properties, combine these
simple languages together to form more
elaborate languages.

A bottom-up approach to the regular
languages.

Regular Expressions

Regular expressions are a way of
describing a language via a string
representation.

They’re used extensively in software
systems for string processing and as the
basis for tools like grep, flex, sed or awk.

Conceptually, regular expressions are
strings describing how to assemble a larger
language out of smaller pieces.

Atomic Regular Expressions

The regular expressions begin with three
simple building blocks.

The symbol Ø is a regular expression that
represents the empty language Ø.

For any a ∈ Σ, the symbol a is a regular
expression for the language {a}.

The symbol ε is a regular expression that
represents the language {ε}.

Remember: {ε} ≠ Ø!

Remember: {ε} ≠ ε!

Compound Regular Expressions

If R1 and R2 are regular expressions, R1R2 is a
regular expression for the concatenation of
the languages of R1 and R2.

If R1 and R2 are regular expressions, R1 ∪ R2
is a regular expression for the union of the
languages of R1 and R2.

If R is a regular expression, R* is a regular
expression for the Kleene closure of the
language of R.

If R is a regular expression, (R) is a regular
expression with the same meaning as R.

Regular Expression Examples

The regular expression hello∪goodbye
represents the regular language { hello,
goodbye }.

The regular expression helloo* represents the
regular language { hello, helloo, hellooo, … }.

The regular expression (bye)* represents the
regular language { ε, bye, byebye, byebyebye, …
}.

Operator Precedence

Regular expression operator precedence:

(R)

R*

R1R2

R1 ∪ R2

So ab*c∪d is parsed as ((a(b*))c)∪d

Regular Expressions, Formally

The language of a regular expression is the
language described by that regular expression.

Formally:

ℒ(ε) = {ε}

ℒ(Ø) = Ø

ℒ(a) = {a}

ℒ(R1R2) = ℒ(R1) ℒ(R2)

ℒ(R1 ∪ R2) = ℒ(R1) ∪ ℒ(R2)

ℒ(R*) = ℒ(R)*

ℒ((R)) = ℒ(R)

Worthwhile activity: Apply this
recursive definition to

a(b∪c)((d))

and see what you get.

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a
substring }.

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a
substring }.

(a ∪ b)*aa(a ∪ b)*

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a
substring }.

(a ∪ b)*aa(a ∪ b)*

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a
substring }.

(a ∪ b)*aa(a ∪ b)*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a
substring }.

(a ∪ b)*aa(a ∪ b)*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a
substring }.

Σ*aaΣ*

bbabbbaabab
aaaa

bbbbbabbbbaabbbbb

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

The length of a string
w is denoted |w|

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

ΣΣΣΣ

aaaa
baba
bbbb
baaa

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

ΣΣΣΣ

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

Σ4

aaaa
baba
bbbb
baaa

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for
the language L. Which of these are correct?

Σ*aΣ*
b*ab* ∪ b*
b*(a ∪ ε)b*
b*a*b* ∪ b*
b*(a* ∪ ε)b*

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ∪ ε)b*

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ∪ ε)b*

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ∪ ε)b*

bbbbabbb
bbbbbb

abbb
a

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ∪ ε)b*

bbbbabbb
bbbbbb

abbb
a

Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb

abbb
a

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

aa* (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.aa*)* @ aa*.aa* (.aa*)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)*

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @ a+ .a+ (.a+)+

A More Elaborate Design

Let Σ = { a, ., @ }, where a represents
“some letter.”

Let's make a regex for email addresses.

cs103@cs.stanford.edu
first.middle.last@mail.site.org

dot.at@dot.com

a+ (.a+)* @a+ (.a+)+

For Comparison

a+(.a+)*@a+(.a+)+

q1 q3

q2

q4 q5 q6

q7q8

q0

@, .

@, .

@, .@, .

a

a

a

a

a

a a

a

start

.

.

.@, .

@

@

@

Σ

Shorthand Summary

Rn is shorthand for RR … R (n times).

• Edge case: define R⁰ = ε.

Σ is shorthand for “any character in Σ.”

R? is shorthand for (R ∪ ε), meaning “zero or
one copies of R.”

R⁺ is shorthand for RR*, meaning “one or
more copies of R.”

Time-Out for Announcements!

Midterm

• Midterm is graded, results are being
released after lecture.

• Solutions will be posted this afternoon.

• The solutions set will include common
mistakes and a breakdown of the grades
so you can measure where you are.

Problem Set

• Problem Set Four is due at 11:59PM on
Thursday.

• You can now answer the regex question,
so all the material needed for this
assignment has been covered.

• Regex tool will be online after lecture today.

• This problem set is huge: come by office
hours or ask questions on Campuswire!

Have a question?

• Tradition from CS 103 classes of yore.

• Ask anonymous questions on any topic
and vote on other student questions. Top
voted questions will get answered in
Friday’s lecture.

• Go to sli.do and input code G517.

Back to CS103!

The Power of Regular Expressions

Theorem: If R is a regular expression,
then ℒ(R) is regular.

Proof idea: Use induction!

The atomic regular expressions all
represent regular languages.

The combination steps represent closure
properties.

So anything you can make from them must
be regular!

Thompson’s Algorithm

In practice, many regex matchers use an
algorithm called Thompson's algorithm
to convert regular expressions into NFAs
(and, from there, to DFAs).

Read Sipser if you’re curious!

Fun fact: the “Thompson” here is Ken
Thompson, one of the co-inventors of Unix!

The Power of Regular Expressions

Theorem: If L is a regular language, then
there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an
arbitrary NFA into a regular expression.

Generalizing NFAs

q₄

q₀

q₂

q₁

q₃

a

b

b

ε

Σ

Σ

start

Generalizing NFAs

q₄

q₀

q₂

q₁

q₃

a

b

b

ε

Σ

Σ

start

Generalizing NFAs

q₄

q₀

q₂

q₁

q₃

These are all regular
expressions!

a

b

b

ε

Σ

Σ

start

Generalizing NFAs

q₀ q₁

q₂ q₃

Note: Actual NFAs aren't allowed to
have transitions like these. This is

just a thought experiment.

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart

Key Idea 1: Imagine that we can label
transitions in an NFA with arbitrary regular

expressions.

Generalizing NFAs

q₀ q₁
ab ∪ bstart

Generalizing NFAs

q₀ q₁

Is there a simple regular
expression for the language of

this generalized NFA?

ab ∪ bstart

Generalizing NFAs

q₀ q₁

Is there a simple regular
expression for the language of

this generalized NFA?

ab ∪ bstart

Generalizing NFAs

q₀ q₁
ab ∪ bstart

Generalizing NFAs

q₀ q₁

Is there a simple regular
expression for the language of

this generalized NFA?

a+(.a+)*@a+(.a+)+start

Generalizing NFAs

q₀ q₁

Is there a simple regular
expression for the language of

this generalized NFA?

a+(.a+)*@a+(.a+)+start

Key Idea 2: If we can convert an NFA into
a generalized NFA that looks like this...

...then we can easily read off a regular
expression for the original NFA.

q₀ q₁
Some-regexstart

From NFAs to Regular Expressions

q1 q2q2

R12

start
R21

R11
R22

From NFAs to Regular Expressions

q1 q2q2

Here, R₁₁, R₁₂, R₂₁, and R₂₂ are arbitrary regular
expressions.

R12

start
R21

R11
R22

From NFAs to Regular Expressions

q1 q2q2

Question: Can we get a clean regular expression
from this NFA?

R12

start
R21

R11
R22

From NFAs to Regular Expressions

q1 q2q2

Key Idea 3: Somehow transform this NFA so that
it looks like this:

q₀ q₁

R12

start
R21

R11
R22

start Some-regex

From NFAs to Regular Expressions

q1 q2q2

The first step is going to be a
bit weird...

R12

start
R21

R11
R22

From NFAs to Regular Expressions

qs qfqfq1 q2q2

R12

start
R21

R11
R22

From NFAs to Regular Expressions

qs qfqfq1 q2q2

R12

R21

R11
R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

Could we eliminate this
state from the NFA?

R12

R21

R11
R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

From NFAs to Regular Expressions

qs qfqfq1 q2

Note: We're using concatenation
and Kleene closure in order to skip

this state.

R12

R21

R11
R22

start ε ε

ε R11*R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

ε R11*R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

ε R11*R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

ε R11*R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

ε R11*R12

R21R11*R12

From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε

ε R11*R12

R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

ε R11*R12

R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

R11*R12

R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

Note: We're using union to combine
these transitions together.

start ε

R11*R12

R22 ∪ R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12

R22 ∪ R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12

R22 ∪ R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12

R22 ∪ R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12

R22 ∪ R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

What should we put on this
transition?

start εR11*R12

R22 ∪ R21R11*R12

From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12

R22 ∪ R21R11*R12

R11*R12(R22 ∪ R21R11*R12)*ε

From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12

R22 ∪ R21R11*R12

R11*R12(R22 ∪ R21R11*R12)*ε

From NFAs to Regular Expressions

qs qfqf

start

R11*R12(R22 ∪ R21R11*R12)*ε

From NFAs to Regular Expressions

qs qfqf

start

R11*R12(R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf

start R11*R12(R22 ∪ R21R11*R12)*

From NFAs to Regular Expressions

qs qfqf

R11*R12(R22 ∪ R21R11*R12)*start

q1 q2q2

R12

start
R21

R11
R22

The Construction at a Glance

Start with an NFA N for the language L.

Add a new start state qs and accept state qf to the
NFA.

Add an ε-transition from qs to the old start state of
N.

Add ε-transitions from each accepting state of N to
qf, then mark them as not accepting.

Repeatedly remove states other than qs and qf from
the NFA by “shortcutting” them until only two
states remain: qs and qf.

The transition from qs to qf is then a regular
expression for the NFA.

Eliminating a State

To eliminate a state q from the automaton, do the following for
each pair of states q₀ and q₁, where there's a transition from q₀
into q and a transition from q into q₁:

Let Rin be the regex on the transition from q₀ to q.

Let Rout be the regex on the transition from q to q₁.

If there is a regular expression Rstay on a transition from q to
itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

If there isn't, add a new transition from q₀ to q₁ labeled
((Rin)(Rout))

If a pair of states has multiple transitions between them
labeled R₁, R₂, …, Rₖ, replace them with a single transition
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.

Our Transformations

DFA NFA Regexp

Direct conversion

Thompson’s algorithmSubset construction

State elimination

Theorem: The following are all equivalent:

L is a regular language.

There is a DFA D such that ℒ(D) = L.

There is an NFA N such that ℒ(N) = L.

There is a regular expression R such that ℒ(R) = L.

Why This Matters

The equivalence of regular expressions and
finite automata has practical relevance.

Tools like grep and flex that use regular
expressions capture all the power available
via DFAs and NFAs.

This also is hugely theoretically significant:
the regular languages can be assembled
“from scratch” using a small number of
operations!

Let’s take a five minute break!

Oreo Sandwiches

For simplicity, let’s just use a single character for the “cream”
part of the Oreo :)

Let Σ = { O, R }

Oreo Sandwiches

Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

Oreo Sandwiches

Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ORO ∈ L

●ROOOR ∈ L

OROORORRO ∈ L

OR ∉ L

●OOOOOR ∉ L

RORORORO ∉ L

Designing DFAs

States – pieces of information

What do I have to keep track of in the
course of figuring out whether a string is
in this language?

Transitions – updating state

From the state I’m currently in, what do I
know about my string? How would
reading this character change what I
know?

An Analogy

BobAlice

961820

Imagine a scenario where Bob is thinking of a
string and Alice has to figure out whether that
string is in a particular language

L = { w is divisible by 5 }

An Analogy

BobAlice

961820

The catch: Bob can only send Alice one character
at a time, and Alice doesn’t know how long the
string is until Bob tells her that he’s done
sending input

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

What does Alice need to remember about
the characters she’s receiving from Bob?

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

6

9

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

6

An Analogy

BobAlice

961820

Key insight: Alice only needs to
remember the last character she
received from Bob

L = { w is divisible by 5 }

. . .

An Analogy

BobAlice

961820

Eventually Bob gets to the end of his
string and sends Alice a signal that he’s
done sending input

L = { w is divisible by 5 }

0

<end>

An Analogy

BobAlice

961820

At this point, Alice just has to look at the
last digit she wrote down and if it’s a 5 or
0, Bob’s string belongs in the language

L = { w is divisible by 5 }

0

<end>

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the
course of figuring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that
question.

The last character could be any digit 0-9. The states for 0 and 5 are accepting states

3. From each state, go through all of the characters and answer
the question “How would reading this character change what I
know about my string?” and draw transitions to the appropriate
states.

Reading a character d should transition to the state representing “the last character of the
string is d”.

DFA Design Strategy

1. Answer the question “What do I have to keep track of in the
course of figuring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that
question.

The last character could be any digit 0-9. The states for 0 and 5 are accepting states.

3. From each state, go through all of the characters and answer
the question “How would reading this character change what I
know about my string?” and draw transitions to the appropriate
states.

Reading a character d should transition to the state representing “the last character of the
string is d”.

L = { w is divisible by 5 }

Oreo Sandwiches

Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

What do I have to keep track of in the course of figuring out
whether a string is in this language?

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

We need to keep track of the very first character

And we need to keep track of the last character
we’ve read so that when we reach the end, we
can check whether the first and last characters
were the same

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

Remember that each state should represent a piece of
information. We’ll annotate what each state represents in blue.

ε

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

We need to keep track of the
very first character, which
could either be an O or an R

ε

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

We need to keep track of the
very first character, which
could either be an O or an R

first
characte
r is O

ε

first
characte
r is R

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

O

If I’m in the start state and I
read an O, I should transition
to this state

first
characte
r is R

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

Likewise if I’m in the start
state and I read an R, I should
transition to this state

R

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

R

We also need to keep track of the
last character we’ve read

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

R

In either case, the last character
could either be an O or an R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

We’re allowed to have states that represent multiple pieces of information

– notice how if you have the string O, it’s both true that the first character

is an O and the last character is an O

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

R

Where should the transitions go?

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

R

As long as I’m still reading Os here,
I should stay in this state because

the last character read was an O

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

O

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

R

If I read an R, then I should
transition over here

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

O

R

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

ε

first
characte
r is O

first
characte
r is R

O

R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

O

R

Fill out the remaining transitions – for each state go through the characters
in Σ and ask yourself, how would reading this character change what I know

about my string?

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

Which of these states should be accepting states?

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

If we end up in this state, that means

both the first and last character were Os,

so we should accept.

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

If we end up in this state, that means

both the first and last character were Os,

so we should accept.

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

Similarly, this state should also be accepting
because it means the first and last

character were Rs

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

Similarly, this state should also be accepting
because it means the first and last

character were Rs

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

If we end up in this state, that means the first

character was an O but the last character

was an R, so we should reject.

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

This is also a rejecting state. It represents

strings where the first character was an R
but the last character was an O.

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

Lastly, the start state is also a rejecting state
because we specified that ε ∉ L

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is R

last
characte
r is O

last
characte
r is O

last
characte
r is R

ε

Great question: why do we need these two states?

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O

O

R

first
characte
r is O

first
characte
r is R

last
characte
r is O

last
characte
r is R

ε

R
Why can’t we have a DFA that looks like

this for this language?

Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last

character of w are the same }

O

R

O
R

O
R

O

R

O

R

More Oreo Sandwiches

Let Σ = { O, R }

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

More Oreo Sandwiches

Let Σ = { O, R }

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

ORO ∈ L

●ROROR ∈ L

OROROROR ∈ L

OOR ∉ L

●RRRRR ∉ L

ROROOROR ∉ L

Designing Regexes

Write out some sample strings in the language and look for
patterns:

Can I separate out the strings into two (or more) categories?

Union – find the pattern for each category, then union together

Can I break this problem down into solving some smaller
subproblems?

Concatenation - find the pattern for each piece/subproblem,
then concatenate together

Is there some sort of repeating structure?

Kleene star – find smallest repeating unit, then star that
pattern

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }
O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Here’s one way we could
design this regex

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }
O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Can I separate out the

strings into two (or more)

categories?

Union –
find the pattern for

each category,
then union together

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I separate out the

strings into two (or more)

categories?

Union –
find the pattern for
each category,
then union together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I break this problem

down into solving some

smaller subproblems?

Concatenation –
find the pattern for each
piece/subproblem,
then concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I break this problem

down into solving some

smaller subproblems?

Concatenation –
find the pattern for each
piece/subproblem,
then concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

O(sequence of ROs)(possibly another R)

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Is there some sort of

repeating structure?

Kleene star –
find smallest repeating
unit, then star that pattern

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

O(RO)*R?

More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Starts with O

O(RO)*R? ∪ R(OR)*O?

R

RO

ROR

RORO

ROROR

...

Starts with R

Next Time

Applications of Regular Languages

Answering “so what?”

Intuiting Regular Languages

What makes a language regular?

The Myhill-Nerode Theorem

The limits of regular languages.

