
Regular Expressions



Recap from Last Time



Regular Languages

A language L is a regular language if 
there is a DFA D such that ℒ(D) = L.

Theorem: The following are equivalent:

• L is a regular language.

• There is a DFA for L.

• There is an NFA for L.



Language Concatenation

If w ∈ Σ* and x ∈ Σ*, then wx is the 
concatenation of w and x.

If L₁ and L₂ are languages over Σ, the 
concatenation of L₁ and L₂ is the language 
L₁L₂ defined as

L₁L₂ = { wx | w ∈ L₁ and x ∈ L₂ }

Example: if L₁ = { a, ba, bb } and L₂ = { aa, bb
}, then

L₁L₂ = { aaa, abb, baaa, babb, bbaa, bbbb }



Lots and Lots of Concatenation

Consider the language L = { aa, b }

LL is the set of strings formed by concatenating pairs of 
strings in L.

{ aaaa, aab, baa, bb }

LLL is the set of strings formed by concatenating 
triples of strings in L.

{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}

LLLL is the set of strings formed by concatenating 
quadruples of strings in L.

{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa,
aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa,

baabb, bbaaaa, bbaab, bbbaa, bbbb}



Language Exponentiation

We can define what it means to “exponentiate” a 
language as follows:

L0 = {ε}

The set containing just the empty string.

Idea: Any string formed by concatenating zero 
strings together is the empty string.

Ln+1 = LLn

Idea: Concatenating (n+1) strings together works 
by concatenating n strings, then concatenating one 
more.

Question: Why define L0 = {ε}?

Question: What is Ø0?



The Kleene Closure

An important operation on languages is the 
Kleene Closure, which is defined as

L* = { w ∈ Σ*  |  ∃n ∈ ℕ. w ∈ Ln }

Mathematically:

w ∈ L*     iff ∃n ∈ ℕ. w ∈ Ln

Intuitively, all possible ways of 
concatenating zero or more strings in L
together, possibly with repetition.

Question: What is Ø0?



The Kleene Closure

If L = { a, bb }, then L* = {

ε,

a, bb,

aa, abb, bba, bbbb,

aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb,

…

} Think of L* as the set of strings you can make if you 
have a collection of stamps – one for each string in L –
and you form every possible string that can be made 

from those stamps.



Closure Properties

Theorem: If L₁ and L₂ are regular languages 
over an alphabet Σ, then so are the following 
languages:

• L₁

• L₁ ∪ L₂

• L₁ ∩ L₂

• L₁L₂

• L₁*

These properties are called closure 
properties of the regular languages.



New Stuff!



Another View of Regular Languages



Rethinking Regular Languages

We currently have several tools for showing 
a language L is regular:

• Construct a DFA for L.

• Construct an NFA for L.

• Combine several simpler regular 
languages together via closure 
properties to form L.

We have not spoken much of this last idea.



Constructing Regular Languages

Idea: Build up all regular languages as 
follows:

• Start with a small set of simple 
languages we already know to be 
regular.

• Using closure properties, combine these 
simple languages together to form more 
elaborate languages.

A bottom-up approach to the regular 
languages.



Constructing Regular Languages

Idea: Build up all regular languages as 
follows:

• Start with a small set of simple 
languages we already know to be 
regular.

• Using closure properties, combine these 
simple languages together to form more 
elaborate languages.

A bottom-up approach to the regular 
languages.



Regular Expressions

Regular expressions are a way of 
describing a language via a string 
representation.

They’re used extensively in software 
systems for string processing and as the 
basis for tools like grep, flex, sed or awk.

Conceptually, regular expressions are 
strings describing how to assemble a larger 
language out of smaller pieces.



Atomic Regular Expressions

The regular expressions begin with three 
simple building blocks.

The symbol Ø is a regular expression that 
represents the empty language Ø.

For any a ∈ Σ, the symbol a is a regular 
expression for the language {a}.

The symbol ε is a regular expression that 
represents the language {ε}.

Remember: {ε} ≠ Ø!

Remember: {ε} ≠ ε!



Compound Regular Expressions

If R1 and R2 are regular expressions, R1R2 is a 
regular expression for the concatenation of 
the languages of R1 and R2.

If R1 and R2 are regular expressions, R1 ∪ R2
is a regular expression for the union of the 
languages of R1 and R2.

If R is a regular expression, R* is a regular 
expression for the Kleene closure of the 
language of R.

If R is a regular expression, (R) is a regular 
expression with the same meaning as R.



Regular Expression Examples

The regular expression hello∪goodbye
represents the regular language { hello, 
goodbye }.

The regular expression helloo* represents the 
regular language { hello, helloo, hellooo, … }.

The regular expression (bye)* represents the 
regular language { ε, bye, byebye, byebyebye, … 
}.



Operator Precedence

Regular expression operator precedence:

(R)

R*

R1R2

R1 ∪ R2

So ab*c∪d is parsed as ((a(b*))c)∪d



Regular Expressions, Formally

The language of a regular expression is the 
language described by that regular expression.

Formally:

ℒ(ε) = {ε}

ℒ(Ø) = Ø

ℒ(a) = {a}

ℒ(R1R2) = ℒ(R1) ℒ(R2)

ℒ(R1 ∪ R2) = ℒ(R1) ∪ ℒ(R2)

ℒ(R*) = ℒ(R)*

ℒ((R)) = ℒ(R)

Worthwhile activity: Apply this 
recursive definition to

a(b∪c)((d))

and see what you get.



Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a 
substring }.
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Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains aa as a 
substring }.
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bbabbbaabab
aaaa

bbbbbabbbbaabbbbb
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Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

Σ4

aaaa
baba
bbbb
baaa



Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | |w| = 4 }.

aaaa
baba
bbbb
baaa

Σ4



Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

Here are some candidate regular expressions for 
the language L. Which of these are correct?

Σ*aΣ*
b*ab* ∪ b*
b*(a ∪ ε)b*
b*a*b* ∪ b*
b*(a* ∪ ε)b*



Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ∪ ε)b*
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Designing Regular Expressions

Let Σ = {a, b}.
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bbbbbb

abbb
a



Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*(a ∪ ε)b*

bbbbabbb
bbbbbb

abbb
a



Designing Regular Expressions

Let Σ = {a, b}.

Let L = { w ∈ Σ* | w contains at most one a }.

b*a?b*

bbbbabbb
bbbbbb

abbb
a



A More Elaborate Design

Let Σ = { a, ., @ }, where a represents 
“some letter.”

Let's make a regex for email addresses.
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A More Elaborate Design

Let Σ = { a, ., @ }, where a represents 
“some letter.”

Let's make a regex for email addresses.
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For Comparison

a+(.a+)*@a+(.a+)+

q1 q3

q2

q4 q5 q6

q7q8

q0

@, .

@, .

@, .@, .

a

a

a

a

a

a a

a

start

.

.

.@, .

@

@

@

Σ



Shorthand Summary

Rn is shorthand for RR … R (n times).

• Edge case: define R⁰ = ε.

Σ is shorthand for “any character in Σ.”

R? is shorthand for (R ∪ ε), meaning “zero or 
one copies of R.”

R⁺ is shorthand for RR*, meaning “one or 
more copies of R.”



Time-Out for Announcements!



Midterm 

• Midterm is graded, results are being 
released after lecture. 

• Solutions will be posted this afternoon.

• The solutions set will include common 
mistakes and a breakdown of the grades 
so you can measure where you are.



Problem Set 

• Problem Set Four is due at 11:59PM on 
Thursday.

• You can now answer the regex question, 
so all the material needed for this 
assignment has been covered.

• Regex tool will be online after lecture today.

• This problem set is huge: come by office 
hours or ask questions on Campuswire!



Have a question?

• Tradition from CS 103 classes of yore.

• Ask anonymous questions on any topic 
and vote on other student questions. Top 
voted questions will get answered in 
Friday’s lecture.

• Go to sli.do and input code G517.



Back to CS103!



The Power of Regular Expressions

Theorem: If R is a regular expression, 
then ℒ(R) is regular.

Proof idea: Use induction!

The atomic regular expressions all 
represent regular languages.

The combination steps represent closure 
properties.

So anything you can make from them must 
be regular!



Thompson’s Algorithm

In practice, many regex matchers use an 
algorithm called Thompson's algorithm
to convert regular expressions into NFAs 
(and, from there, to DFAs).

Read Sipser if you’re curious!

Fun fact: the “Thompson” here is Ken 
Thompson, one of the co-inventors of Unix!



The Power of Regular Expressions

Theorem: If L is a regular language, then 
there is a regular expression for L.

This is not obvious!

Proof idea: Show how to convert an 
arbitrary NFA into a regular expression.



Generalizing NFAs

q₄

q₀

q₂

q₁

q₃

a

b

b

ε

Σ

Σ

start
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q₄

q₀

q₂

q₁

q₃
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b

b

ε

Σ

Σ

start



Generalizing NFAs

q₄

q₀

q₂

q₁

q₃

These are all regular 
expressions!

a

b

b

ε

Σ

Σ

start



Generalizing NFAs

q₀ q₁

q₂ q₃

Note: Actual NFAs aren't allowed to 
have transitions like these. This is 

just a thought experiment.

ab*

a*b?a*

a

ab ∪ bstart



Generalizing NFAs
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Generalizing NFAs

q₀ q₁

q₂ q₃

a a a b a a b b b

ab*

a*b?a*

a

ab ∪ bstart



Key Idea 1: Imagine that we can label 
transitions in an NFA with arbitrary regular 

expressions.



Generalizing NFAs

q₀ q₁
ab ∪ bstart
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Generalizing NFAs
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Is there a simple regular 
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Generalizing NFAs

q₀ q₁

Is there a simple regular 
expression for the language of 

this generalized NFA?

a+(.a+)*@a+(.a+)+start



Key Idea 2: If we can convert an NFA into 
a generalized NFA that looks like this...

...then we can easily read off a regular 
expression for the original NFA.

q₀ q₁
Some-regexstart



From NFAs to Regular Expressions

q1 q2q2

R12

start
R21

R11
R22



From NFAs to Regular Expressions

q1 q2q2

Here, R₁₁, R₁₂, R₂₁, and R₂₂ are arbitrary regular 
expressions.

R12

start
R21

R11
R22



From NFAs to Regular Expressions

q1 q2q2

Question: Can we get a clean regular expression 
from this NFA?

R12

start
R21

R11
R22



From NFAs to Regular Expressions

q1 q2q2

Key Idea 3: Somehow transform this NFA so that 
it looks like this:

q₀ q₁

R12

start
R21

R11
R22

start Some-regex



From NFAs to Regular Expressions

q1 q2q2

The first step is going to be a
bit weird...

R12

start
R21

R11
R22



From NFAs to Regular Expressions

qs qfqfq1 q2q2
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R21

R11
R22



From NFAs to Regular Expressions
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From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε



From NFAs to Regular Expressions

qs qfqfq1 q2

Could we eliminate this 
state from the NFA?

R12

R21

R11
R22

start ε ε



From NFAs to Regular Expressions
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From NFAs to Regular Expressions

qs qfqfq1 q2

R12

R21

R11
R22

start ε ε



From NFAs to Regular Expressions

qs qfqfq1 q2

Note: We're using concatenation
and Kleene closure in order to skip 

this state.

R12

R21

R11
R22

start ε ε

ε R11*R12
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From NFAs to Regular Expressions

qs qfqfq2

R22

start ε

R11*R12

R21R11*R12



From NFAs to Regular Expressions

qs qfqfq2

Note: We're using union to combine 
these transitions together.

start ε

R11*R12

R22 ∪ R21R11*R12



From NFAs to Regular Expressions
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From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12
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From NFAs to Regular Expressions

qs qfqfq2

What should we put on this 
transition?

start εR11*R12

R22 ∪ R21R11*R12



From NFAs to Regular Expressions
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From NFAs to Regular Expressions

qs qfqfq2

start εR11*R12

R22 ∪ R21R11*R12

R11*R12(R22 ∪ R21R11*R12)*ε



From NFAs to Regular Expressions

qs qfqf

start

R11*R12(R22 ∪ R21R11*R12)*ε



From NFAs to Regular Expressions

qs qfqf

start

R11*R12(R22 ∪ R21R11*R12)*



From NFAs to Regular Expressions

qs qfqf

start R11*R12(R22 ∪ R21R11*R12)*



From NFAs to Regular Expressions

qs qfqf

R11*R12(R22 ∪ R21R11*R12)*start

q1 q2q2

R12

start
R21

R11
R22



The Construction at a Glance

Start with an NFA N for the language L.

Add a new start state qs and accept state qf to the 
NFA.

Add an ε-transition from qs to the old start state of 
N.

Add ε-transitions from each accepting state of N to 
qf, then mark them as not accepting.

Repeatedly remove states other than qs and qf from 
the NFA by “shortcutting” them until only two 
states remain: qs and qf.

The transition from qs to qf is then a regular 
expression for the NFA.



Eliminating a State

To eliminate a state q from the automaton, do the following for 
each pair of states q₀ and q₁, where there's a transition from q₀ 
into q and a transition from q into q₁:

Let Rin be the regex on the transition from q₀ to q.

Let Rout be the regex on the transition from q to q₁.

If there is a regular expression Rstay on a transition from q to 
itself, add a new transition from q₀ to q₁ labeled
((Rin)(Rstay)*(Rout)).

If there isn't, add a new transition from q₀ to q₁ labeled 
((Rin)(Rout))

If a pair of states has multiple transitions between them 
labeled R₁, R₂, …, Rₖ, replace them with a single transition 
labeled R₁ ∪ R₂ ∪ … ∪ Rₖ.



Our Transformations

DFA NFA Regexp

Direct conversion

Thompson’s algorithmSubset construction

State elimination



Theorem: The following are all equivalent:

L is a regular language.

There is a DFA D such that ℒ(D) = L.

There is an NFA N such that ℒ(N) = L.

There is a regular expression R such that ℒ(R) = L.



Why This Matters

The equivalence of regular expressions and 
finite automata has practical relevance.

Tools like grep and flex that use regular 
expressions capture all the power available 
via DFAs and NFAs.

This also is hugely theoretically significant: 
the regular languages can be assembled 
“from scratch” using a small number of 
operations!



Let’s take a five minute break!





Oreo Sandwiches

For simplicity, let’s just use a single character for the “cream” 
part of the Oreo :)

Let Σ = { O, R }
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Oreo Sandwiches

Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ORO ∈ L

●ROOOR ∈ L

OROORORRO ∈ L

OR ∉ L

●OOOOOR ∉ L

RORORORO ∉ L



Designing DFAs

States – pieces of information

What do I have to keep track of in the 
course of figuring out whether a string is 
in this language?

Transitions – updating state

From the state I’m currently in, what do I 
know about my string? How would 
reading this character change what I 
know?



An Analogy

BobAlice

961820

Imagine a scenario where Bob is thinking of a 
string and Alice has to figure out whether that 
string is in a particular language

L = { w is divisible by 5 }



An Analogy

BobAlice

961820

The catch: Bob can only send Alice one character 
at a time, and Alice doesn’t know how long the 
string is until Bob tells her that he’s done 
sending input

L = { w is divisible by 5 }

9



An Analogy

BobAlice

961820

What does Alice need to remember about 
the characters she’s receiving from Bob?

L = { w is divisible by 5 }

9



An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

9



An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob
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6

9



An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

6



An Analogy

BobAlice

961820

Key insight: Alice only needs to 
remember the last character she 
received from Bob

L = { w is divisible by 5 }

. . .



An Analogy

BobAlice

961820

Eventually Bob gets to the end of his 
string and sends Alice a signal that he’s 
done sending input

L = { w is divisible by 5 }

0

<end>



An Analogy

BobAlice

961820

At this point, Alice just has to look at the 
last digit she wrote down and if it’s a 5 or 
0, Bob’s string belongs in the language

L = { w is divisible by 5 }

0

<end>



DFA Design Strategy

1. Answer the question “What do I have to keep track of in the 
course of figuring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that 
question.

The last character could be any digit 0-9. The states for 0 and 5 are accepting states

3. From each state, go through all of the characters and answer 
the question “How would reading this character change what I 
know about my string?” and draw transitions to the appropriate 
states.

Reading a character d should transition to the state representing “the last character of the 
string is d”.



DFA Design Strategy

1. Answer the question “What do I have to keep track of in the 
course of figuring out whether a string is in this language?”

We need to keep track of the last character.

2. Create a state that represents each possible answer to that 
question.

The last character could be any digit 0-9. The states for 0 and 5 are accepting states.

3. From each state, go through all of the characters and answer 
the question “How would reading this character change what I 
know about my string?” and draw transitions to the appropriate 
states.

Reading a character d should transition to the state representing “the last character of the 
string is d”.

L = { w is divisible by 5 }



Oreo Sandwiches

Let Σ = { O, R }

Design a DFA for the language

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

What do I have to keep track of in the course of figuring out 
whether a string is in this language?



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

We need to keep track of the very first character

And we need to keep track of the last character 
we’ve read so that when we reach the end, we 
can check whether the first and last characters 
were the same



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

Remember that each state should represent a piece of 
information. We’ll annotate what each state represents in blue.

ε



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

We need to keep track of the 
very first character, which 
could either be an O or an R

ε



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

We need to keep track of the 
very first character, which 
could either be an O or an R

first 
characte
r is O

ε

first 
characte
r is R



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

O

If I’m in the start state and I 
read an O, I should transition 
to this state

first 
characte
r is R



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

Likewise if I’m in the start 
state and I read an R, I should 
transition to this state

R



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

R

We also need to keep track of the
last character we’ve read



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

R

In either case, the last character 
could either be an O or an R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

We’re allowed to have states that represent multiple pieces of information 

– notice how if you have the string O, it’s both true that the first character 

is an O and the last character is an O



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

R

Where should the transitions go?

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

R

As long as I’m still reading Os here, 
I should stay in this state because 

the last character read was an O

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

O



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

R

If I read an R, then I should 
transition over here

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

O

R



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

ε

first 
characte
r is O

first 
characte
r is R

O

R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

O

R

Fill out the remaining transitions – for each state go through the characters 
in Σ and ask yourself, how would reading this character change what I know 

about my string?



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

Which of these states should be accepting states?



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

If we end up in this state, that means 

both the first and last character were Os, 

so we should accept.



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

If we end up in this state, that means

both the first and last character were Os,

so we should accept.



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

Similarly, this state should also be accepting
because it means the first and last

character were Rs



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

Similarly, this state should also be accepting 
because it means the first and last 

character were Rs



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

If we end up in this state, that means the first

character was an O but the last character

was an R, so we should reject.



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

This is also a rejecting state. It represents 

strings where the first character was an R
but the last character was an O.



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

Lastly, the start state is also a rejecting state
because we specified that ε ∉ L



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is R

last 
characte
r is O

last 
characte
r is O

last 
characte
r is R

ε

Great question: why do we need these two states?



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O

O

R

first 
characte
r is O

first 
characte
r is R

last 
characte
r is O

last 
characte
r is R

ε

R
Why can’t we have a DFA that looks like 

this for this language?



Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the first and last 

character of w are the same }

O

R

O
R

O
R

O

R

O

R
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L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }



More Oreo Sandwiches

Let Σ = { O, R }

Design a regex for the language

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

ORO ∈ L

●ROROR ∈ L

OROROROR ∈ L

OOR ∉ L

●RRRRR ∉ L

ROROOROR ∉ L



Designing Regexes

Write out some sample strings in the language and look for 
patterns:

Can I separate out the strings into two (or more) categories?

Union – find the pattern for each category, then union together

Can I break this problem down into solving some smaller 
subproblems?

Concatenation - find the pattern for each piece/subproblem, 
then concatenate together

Is there some sort of repeating structure?

Kleene star – find smallest repeating unit, then star that 
pattern



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }
O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Here’s one way we could 
design this regex



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }
O

R

OR

RO

ORO

ROR

OROR

RORO

ORORO

ROROR

...

Can I separate out the

strings into two (or more)

categories?

Union –
find the pattern for 

each category, 
then union together



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I separate out the 

strings into two (or more) 

categories?

Union –
find the pattern for 
each category, 
then union together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I break this problem

down into solving some

smaller subproblems?

Concatenation –
find the pattern for each 
piece/subproblem, 
then concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Can I break this problem 

down into solving some 

smaller subproblems?

Concatenation –
find the pattern for each 
piece/subproblem, 
then concatenate together

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

O(sequence of ROs)(possibly another R)



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Is there some sort of 

repeating structure?

Kleene star –
find smallest repeating 
unit, then star that pattern

R

RO

ROR

RORO

ROROR

...

Starts with O Starts with R

O(RO)*R?



More Oreo Sandwiches

L = { w ∈ Σ* | w ≠ ε and the characters of w

alternate between O and R }

O

OR

ORO

OROR

ORORO

...

Starts with O

O(RO)*R?   ∪   R(OR)*O?

R

RO

ROR

RORO

ROROR

...

Starts with R



Next Time

Applications of Regular Languages

Answering “so what?”

Intuiting Regular Languages

What makes a language regular?

The Myhill-Nerode Theorem

The limits of regular languages.


